Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Genes Cells ; 28(4): 249-257, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2266339

ABSTRACT

Wnt2022 was held on November 15th-19th, 2022, in Awaji Yumebutai International Conference Center, Hyogo Prefecture, Japan, as an in-person meeting for the first time in last 3 years. Wnt signaling is a highly conserved pathway among various species. Since Wnt1 was discovered in 1982, a number of studies using many model animals and human samples have revealed that Wnt signaling plays crucial roles in embryonic development, tissue morphogenesis, and regeneration, as well as many other physiological and pathological processes. Since the year 2022 marks the 40th anniversary of Wnt research, we aimed to look back at our research progress and discuss the future direction of this field. The scientific program consisted of plenary lectures, invited talks, short talks selected from abstracts, and poster sessions. Whereas several different Wnt meetings have been held almost every year in Europe and the United States, this was the first Wnt meeting convened in Asia. Therefore, Wnt2022 was highly anticipated to bring together leaders and young scientists from Europe, the United States, and especially Asia and Oceania. In fact, 148 researchers from 21 countries attended this meeting. Although there were travel and administrative restrictions due to COVID-19, the meeting was highly successful in enabling face-to-face discussions.


Subject(s)
COVID-19 , Animals , Humans , Asia , Japan , Wnt Signaling Pathway
2.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: covidwho-2256062

ABSTRACT

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Subject(s)
Hypercapnia , Wnt Signaling Pathway , Mice , beta Catenin/metabolism , Cell Proliferation , COVID-19/complications , Hypercapnia/metabolism
3.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L515-L524, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2108362

ABSTRACT

Failure to regenerate injured alveoli functionally and promptly causes a high incidence of fatality in coronavirus disease 2019 (COVID-19). How elevated plasminogen activator inhibitor-1 (PAI-1) regulates the lineage of alveolar type 2 (AT2) cells for re-alveolarization has not been studied. This study aimed to examine the role of PAI-1-Wnt5a-ß catenin cascades in AT2 fate. Dramatic reduction in AT2 yield was observed in Serpine1Tg mice. Elevated PAI-1 level suppressed organoid number, development efficiency, and total surface area in vitro. Anti-PAI-1 neutralizing antibody restored organoid number, proliferation and differentiation of AT2 cells, and ß-catenin level in organoids. Both Wnt family member 5A (Wnt5a) and Wnt5a-derived N-butyloxycarbonyl hexapeptide (Box5) altered the lineage of AT2 cells. This study demonstrates that elevated PAI-1 regulates AT2 proliferation and differentiation via the Wnt5a/ß catenin cascades. PAI-1 could serve as autocrine signaling for lung injury repair.


Subject(s)
COVID-19 , Plasminogen Activator Inhibitor 1 , Wnt-5a Protein , beta Catenin , Animals , Mice , Antibodies, Neutralizing , beta Catenin/metabolism , Down-Regulation , Wnt Signaling Pathway/physiology , Wnt-5a Protein/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Alveoli/cytology , Cell Proliferation
4.
Nature ; 604(7907): 723-731, 2022 04.
Article in English | MEDLINE | ID: covidwho-1799583

ABSTRACT

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Subject(s)
Macaca fascicularis , Transcriptome , Animals , Cell Communication , Macaca fascicularis/genetics , Receptors, Virus/genetics , Transcriptome/genetics , Wnt Signaling Pathway
5.
Cell Rep ; 35(10): 109218, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1233382

ABSTRACT

Although the main cellular target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be alveolar cells, the absence of their tractable culture system precludes the development of a clinically relevant SARS-CoV-2 infection model. Here, we establish an efficient human alveolosphere culture method and sphere-based drug testing platform for SARS-CoV-2. Alveolospheres exhibit indolent growth in a Wnt- and R-spondin-dependent manner. Gene expression, immunofluorescence, and electron microscopy analyses reveal the presence of alveolar cells in alveolospheres. Alveolospheres express ACE2 and allow SARS-CoV-2 to propagate nearly 100,000-fold in 3 days of infection. Whereas lopinavir and nelfinavir, protease inhibitors used for the treatment of human immunodeficiency virus (HIV) infection, have a modest anti-viral effect on SARS-CoV-2, remdesivir, a nucleotide prodrug, shows an anti-viral effect at the concentration comparable with the circulating drug level. These results demonstrate the validity of the alveolosphere culture system for the development of therapeutic agents to combat SARS-CoV-2.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Evaluation, Preclinical , SARS-CoV-2/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Host-Pathogen Interactions , Humans , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Spheroids, Cellular , Time Factors , Virus Replication/drug effects , Wnt Signaling Pathway
6.
Int J Mol Sci ; 21(18)2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1215392

ABSTRACT

The transcription factor T cell factor 1 (TCF1), a pioneer transcription factor as well as a downstream effector of WNT/ß-catenin signaling, is indispensable for T cell development in the thymus. Recent studies have highlighted the additional critical role of TCF1 in peripheral T cell responses to acute and chronic infections as well as cancer. Here, we review the regulatory functions of TCF1 in the differentiation of T follicular helper cells, memory T cells and recently described stem-like exhausted T cells, where TCF1 promotes less differentiated stem-like cell states by controlling common gene-regulatory networks. These studies also provide insights into the mechanisms of defective T cell responses in older individuals. We discuss alterations in TCF1 expression and related regulatory networks with age and their consequences for T cell responses to infections and vaccination. The increasing understanding of the pathways regulating TCF1 expression and function in aged T cells holds the promise of enabling the design of therapeutic interventions aiming at improving T cell responses in older individuals.


Subject(s)
Cell Differentiation/physiology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/metabolism , Aging/genetics , Aging/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/genetics , Cellular Senescence/physiology , Gene Expression Regulation/genetics , Hematopoiesis/physiology , Humans , Lymphocyte Activation/immunology , T Cell Transcription Factor 1/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology
7.
Front Immunol ; 12: 666693, 2021.
Article in English | MEDLINE | ID: covidwho-1209418

ABSTRACT

The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1ß, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/ß-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/ß-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/ß-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/ß-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/pathology , PPAR gamma/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cytokines/blood , Humans , PPAR gamma/agonists , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL